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Unsteady Transonic Aerodynamics
and Aeroelastic Calculations at Low-Supersonic Freestreams
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A computational procedure is presented to simulate transonic unsteady flows and corresponding
aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic
small-perturbation theory. The structural equations of motions are modeled using modal equations of motion
directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the
boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow
equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled
aeroelastic equations of motion are solved by an integration procedure based on the time-accurate,
linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both
steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings.
Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed
for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams.
The extension of the transonic dip into the upper transonic regime is illustrated.

Introduction

FLYING aircraft in the transonic regime is efficient because
of the high lift-to-drag ratios. However, several undesir-

able phenomena occur in the transonic regime. From an
aeroelastic point of view, the major concern is the presence of
moving shock waves and the rapid changes in the flows
because of structural deflections. One commonly observed
undesirable phenomenon in the transonic regime is the dip in
the flutter curve.1'2

The nonlinear flow effects in the transonic regime have
proven to be challenging for both experiments and computa-
tions. To date, the most advanced codes for practical
aeroelastic applications use equations based on the potential
flow theory. Methods^ based on Euler/Navier-Stokes equa-
tions are just becoming useful for practical applications.

Among potential flow theories, procedures based on the
transonic small-perturbation (TSP) theory have lead to the
development of successful computational methods for three-
dimensional flows.3'4 A finite-difference scheme based on the
alternate-direction implicit scheme combined with the Mur-
man-Cole shock-capturing method has proven successful in
providing time-accurate, unsteady transonic results for wings
and wing/body configurations.5 Using this time-accurate
finite-difference technique, TSP equations have been solved to
date for transonic flows with only subsonic freestreams.3'4

However, flows can be transonic for supersonic freestream
Mach numbers near unity. Experimental studies1 for wings
have shown that the transonic dip phenomenon can extend
into the upper transonic regime with supersonic freestreams.
Therefore, there is a need for an efficient computational
method that can compute nonlinear flowfields in the upper
transonic regime. A time-accurate procedure based on the
alternate-direction implicit (ADI) scheme for unsteady tran-
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sonic airfoil calculations at supersonic freestreams was first
presented in Ref. 6. In the present work, a similar procedure
for three-dimensional flows is presented for wings. The pres-
ent procedure is also coupled with structural equations of
motion by using a simultaneous integration procedure7 and it
is incorporated in XTRAN3S-Ames4 code, the Ames version
of the Air Force/NASA XTRAN3S.8 Recently, unsteady tran-
sonic computations at supersonic freestreams were made for
wings using a finite-difference scheme based on the approxi-
mate factorization (AF) method in Ref. 9.

The present work is done in conjunction with further
extension of XTRAN3S, a general-purpose code that is being
developed for computing unsteady transonic aerodynamics
and aeroelasticity of full aircraft. At present, this code can be
used to compute flows over wings and full-span wing/body
configurations with tip-mounted missiles and with active con-
trol surfaces. Because of the use of the TSP equation, the
computational time is practical for computationally intensive
aeroelastic calculations. The present development will extend
the capability of XTRAN3S to a full transonic range.

In this paper, a scheme that can be used to compute the full
range of transonic flows is presented. The basic solution
procedure is based on an alternating-direction, finite-differ-
ence scheme, combined with the Murman-Cole shock-captur-
ing technique. The far-field boundary conditions are varied
depending on the freestream Mach numbers. For subsonic
freestreams, boundary conditions are used from subsonic
theory.3 For supersonic freestreams, boundary conditions are
switched to those from supersonic theory. Steady and un-
steady flows are computed for rectangular and fighter wings at
supersonic freestreams. Computed results are compared with
the corresponding experimental data. Aeroelastic response
analysis is conducted for a rectangular wing. The extension of
the transonic dip into the supersonic regime is illustrated.

Formulation of Unsteady Transonic Flow Equations
The three-dimensional modified, small-disturbance, un-

steady transonic equation of motion used in this analysis is
given by
A <t>tt + B<t>xt = [£«* + F<& + Gtfy ]x + Wy + H<t>x<t>y ]y + U>z ]z

(1)
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where

=(\-Mi);F = - (1/2X7

The thin-wing, surface flow tangency condition satisfied at
the mean plane is given by

(2)

where f ( x ) denotes the airfoil surface and k a time scale.
Jump conditions used for the trailing vortex wake are

+ A: <£,] =

(3a)

(3b)

and for the supersonic freestream

0 = 0

Downstream Boundary Conditions
Such conditions for the subsonic freestream are

<j)x + k<j)t = 0

and for the supersonic freestream

0<t>x + </>z - 0 for z > 0.0

&<j>x — 0 = 0 for z < 0.0

(4b)

(4c)

(5a)

(5b)

(5c)

where [ ] denotes the jump in the quantity across the vortex
sheet.

Far-Field Boundary Conditions
For subsonic freestreams, the boundary conditions from the

TSP theory are implemented. For supersonic freestreams, the
numerical far-field boundary conditions are modified to re-
flect the physical domain of dependence and to enhance the
stability characteristics of the numerical scheme. In this work,
modifications are implemented only in the flow boundaries of
stream wise planes following the development in Ref. 6. The
wall and far-span boundaries are not modified. This type of
boundary conditions are adequate since the purpose of the
present study is to make computations at low supersonic Mach
numbers when the flow is still transonic on the wing. Numeri-
cal experiments in this study have shown the validity of these
boundary conditions.

Upstream Boundary Conditions
At the upstream boundary, the flow is uniform and

unperturbed. Thus, the disturbance velocity potential is zero
and the upstream boundary conditions for the subsonic free-
stream are

0 = 0 (4a)

At far-fields above and below the wing, the condition for
the subsonic freestream is

and for the supersonic freestream

0<l>x + <f>z = 0 at boundary above the wing

(3<l)x — <f>z = 0 at boundary below the wing

(6a)

(6b)

(6c)

where 0 = (M« - 1)1/2. These conditions are obtained from the
supersonic linear theory and correspond to the propagation of
pressure waves along the flow characteristics, which are lines
of constant velocity potential.

At wing root and far-span, for both subsonic and super-
sonic freestreams, the condition is

(7)

The above flowfield boundary conditions and wing surface
boundary conditions are illustrated in Fig. 1.

Transformation of Aerodynamic Equations
The aerodynamic equations are transformed so that a

swept-tapered wing can be analyzed by using a finite-differ-
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Fig. 2 Comparison of steady pressures between calculation and
experiment for the rectangular wing.

ence mesh that is aligned with the leading and trailing edges of
the wing. The transformed equation is obtained by the modi-
fied shearing transformation4 solved by the time-accurate,
alternating-direction, implicit finite-difference scheme. The
transformation that maps a swept-tapered wing to a rectangu-
lar planform is given by

(8a)

(8b)

(8c)

where Eq. (8a) is obtained by using the Ames-modified shear-
ing transformation.4 The resulting transformed equation is

+ K71«f]f = 0 (9)

The differencing procedure for Eq. (9) is an extension of the
Murman-Cole type-dependent difference procedure applied to
an arbitrary coordinate system.3

Aeroelastic Equations of Motion
The governing aeroelastic equations of motion of a flexible

wing are obtained by using the Rayleigh-Ritz method. In this
method, the resulting aeroelastic displacement at any time are
expressed as a function of a finite set of selected modes. The
contribution of each selected mode to the total motion is
derived by Lagrange's equation. Furthermore, it is assumed
that the deformation of the continuous wing structure can be
represented by deflections at a set of discrete points. This
assumption facilitates the use of discrete structural data, such
as the modal vector, modal stiffness matrix, and modal mass
matrix. In this study, the finite-element method is employed to
obtain the modal data.

It is assumed that the deformed shape of the wing can be
represented by a set of discrete displacements at selected
nodes. From the modal analysis, the displacement vector [d]
can be expressed as

[d] = (10)

where [<£] is the matrix of displacements of the natural
vibration modes interpolated to the finite-difference grid
points used to model the flow and [q] the generalized dis-
placement vector.

The final matrix form of the aeroelastic equations of
motion is

= [F] (11)

where [M], [G], and [K] are the modal mass, damping, and
stiffness matrices, respectively, and [q] and [q] the generalized
velocity and acceleration vectors, respectively. [F] is the aero-
dynamic force vector defined as (l/2)pUl,[<l>]T[A]{ACp} and
[A] the diagonal area matrix of the aerodynamic control
points, which are same as the grid points used for the finite-
difference modeling of the flow.

The matrix [A] is computed as follows. Each finite-differ-
ence grid cell is divided into four equal subcells. The
component of the area matrix [A] associated with any grid
point is computed by adding the areas of all the subcells
adjoining to that grid point. Interior grid points have four
subcells per grid point. The wing boundary grid points have
two subcells per grid point.

The aeroelastic equations of motion [Eq. (11)] are solved by
numerically integrating in time by the linear acceleration
method.7 The step-by-step integration procedure for obtaining
the aeroelastic response was performed as follows. Assuming
that freestream conditions and wing surface boundary condi-
tions were obtained from a set of selected starting values of the
generalized displacement, velocity, and acceleration vectors,
the generalized aerodynamic force vector F(t) at time t + Af
was computed by solving Eq. (11). Using this aerodynamic
vector, the generalized displacement, velocity, and accelera-
tion vectors for the time level t + AJ are calculated by numeri-
cally integrating Eq. (9). From the generalized displacements
computed at the time level t + At, the new boundary condi-
tions on the surface of the wing are computed. With these new
boundary conditions, the aerodynamic vector F ( t ) at the next



958 G. P. GURUSWAMY AND P. M. GOORJIAN J. AIRCRAFT

5% THICK BICONVEX AIRFOIL
RECTANGULAR WING
AR = 3.0

RECTANGULAR WING
AR = 3.0, 5% THICK BICONVEX AIRFOIL
M = 1.1. k = 0.22, FIRST BENDING MODE

• XTRAN3S-AMES
D A EXPERIMENT

CHORD
Fig. 3 First bending mode of the rectangular wing for unsteady
computations.

time level is computed by using Eq. (9). This process is
repeated at every time step to solve the aerodynamic and struc-
tural equations of motion forward in time until the required
response is obtained.

Results
Aerodynamic Computations

Transonic steady and unsteady pressures were computed for
a rectangular wing and a fighter wing at supersonic free-
streams. For all the cases considered in this work, a grid with
64 points in the x direction, 20 points in the y direction, and 40
points in the z direction was used in the analysis. The unsteady
pressures were computed by forcing the wing to undergo a
sinusoidal modal motion for three cycles of 360 time steps per
cycle during which time the transients disappeared and a peri-
odic response was obtained. All computed results are com-
pared with the corresponding experimental data.

The rectangular wing selected has an aspect ratio of 3, with
5% thick biconvex airfoil sections. Both steady and unsteady
experimental data are available for this wing from wind-tunnel
tests.10 Both steady and unsteady transonic pressure results
computed by using Eq. (9) compare well with the experiments
at subsonic freestreams. Here, results at supersonic free-
streams are presented.

In Fig. 2, the steady pressures are compared between the
theory and the experiment at M = 1.1 for four span stations.
The two sets of data compare well at all span stations. The
computed result shows the presence of a shock wave near the
trailing edge. For this wing, the unsteady pressures were
measured in the wind tunnel when the wing was oscillating in
its first bending mode as shown in Fig. 3. The same modal
motion was simulated in the calculation. In Fig. 4, magnitudes
and phase angles of the unsteady pressure jumps obtained by
the computation and the experiment are plotted at 0, 50, 70,
and 90% semispan stations, respectively, for M= 1.1 and
k- 0.22. The magnitudes of the pressure coefficients com-
pare better than the phase angles. The discrepancies near the
root are possibly due to the viscous effects of the wall that
were not considered in the computed results. The discrepan-
cies for span stations away from the wall are due to the
scattered experimental data. However, the computed and
experimental results agree fairly well in trend.

The selected fighter wing was the F-5 wing with an aspect
ratio of 3, for which both steady and unsteady data are
available from wind tunnel tests.11 Both steady and unsteady
transonic pressure results computed by using Eq. (9) compare
well with the experiments at subsonic freestreams.4

In Fig. 5, the steady pressure curves are compared between
the theory and the experiment for M - 1.33 at four span wise
stations. The two sets of data compare well at all span sta-
tions. The computed result shows the presence of a shock
wave near the trailing edge. Figure 6 shows the modal motion
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Fig. 4 Comparison of unsteady pressures between calculation and
experiment for the rectangular wing.

used in the experiment.12 The wing is pitching about an axis
located at the 50% root chord and the pitching axis is normal
to the wing root. Figure 7 shows plots of the real and imag-
inary values of the upper-surface pressures at four span sta-
tions obtained by the present study and the experiment at a
supersonic freestream of M - 1.34. These results were ob-
tained for the wing oscillating at a frequency of 40 cycles. The
same modal motion used as in the experiment was simulated in
the calculation. As shown in Fig. 7, both the real and imagin-
ary parts of the computed unsteady pressures compare well
with the experiment for all span stations. Some discrepancies
between the results may be due to the viscous effects that are
not accounted for in the computations.

Aeroelastic Computations
To illustrate an aeroelastic case, a typical uniform rectangu-

lar wing of aspect ratio 5.0 with 6% thick parabolic arc sec-
tions was selected. Transonic flutter characteristics of this
wing are available from the wind-tunnel tests.12 The mode
shapes and frequencies required for the modal equations of
motion [Eq. (11)] were obtained by a 16-degree-of-freedom
rectangular finite element.13 Figure 8 shows the mode shapes
and frequencies of the first five natural modes for the wing.
The modal data compare well with the measured data from the
wind-tunnel flutter tests.12 For example, the computed values
of the natural frequencies of the first bending and torsional
modes are 13.21 and 67.32 Hz, respectively. The correspond-
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Fig. 7 Comparison of upper-surface unsteady pressures between
calculation and experiment for the F-5 wing.

ing measured values are 14.29 and 80.40 Hz, respectively. The
computed values were obtained using the structural properties
of the aluminum-alloy flat-plate insert in the model. The
influence of the lightweight covering used for the wind-tunnel
model to provide the thickness was not accounted for in the
computations due to lack of available data. This might have
caused discrepancies between the computed and measured
frequencies. Using these modal data, the aeroelastic equation
of motion [Eq. (11)] was solved.

Aeroelastic analyses were conducted for Mach numbers
from lower transonic of about 0.70 to upper transonic of
about 1.1. All responses were started with modally displaced
initial conditions obtained by giving unit values to the first two
generalized displacements, q(l) and q(2). Mach numbers
selected represent flow conditions ranging from subsonic, to
transonic with shock waves, to transonic at supersonic free-
streams. In Figs. 9-11, the responses of the first and second
generalized displacements q(l) and q (2) of Eq. (11) are shown
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Fig. 8 Mode shapes of the rectangular wing for aeroelastic analysis.
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for Mach numbers 0.913, 1.017, and 1.1, respectively. For
each Mach number, responses that are stable, near neutrally
stable, and unstable are shown by varying the dynamic
pressures. From these results, the responses are more sensitive
to the variation of dynamic pressure at supersonic freestreams
than at subsonic freestreams. For example, increases in
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Fig. 10 Aeroelastic responses of the rectangular wing at M = 1.017.

dynamic pressures of about 25 and 10% were required for the
response to go from stable to unstable conditions for
M= 0.913 and 1.100, respectively.

The flutter speeds were computed by numerically interpolat-
ing the dynamic pressures to match a response that corre-
sponds to zero damping. This was accomplished by fitting a
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Fig. 12 Effect of Mach number on flutter dynamic pressure.

quadratic curve between the dynamic pressures and damping
coefficients using the responses of the first generalized coordi-
nate <?(!) computed at three dynamic pressures. Since the
configuration considered is a simple rectangular wing, only
the responses of <?(!) were adequate in determining the flutter
dynamic pressure. In order to compute the flutter dynamic
pressure accurately, dynamic pressures were chosen close to
the possible flutter dynamic pressure. In this work, such a
selection was possible since the flutter dynamic pressures were
approximately known from the wind-tunnel measurements. In
other situations where such experimental data are not avail-
able, approximate flutter dynamic pressures can be found
using the uncoupled flutter analysis that is computationally
less expensive than the present time response analysis. Such a
procedure is explained by Guruswamy and Yang.7

The plots of dynamic pressure vs Mach number from both
computations and the experiment12 are shown in Fig. 12. The
computed flutter speeds, which compare well with the experi-
ment, show a slightly less conservative flutter boundary. The
transonic dip in the flutter curve that extends to the zone of

supersonic freestreams can be seen in the figure. These
aeroelastic results illustrate the importance of the method
presented in this paper for computing transonic flows at
supersonic freestreams.

Conclusions
A procedure has been developed for computing unsteady

transonic aerodynamic loads at supersonic free,strearns. The
flow is modeled using the transonic small-disturbance equa-
tions of motion. Steady and unsteady pressure distributions
for both rectangular and fighter wings compare well with
experiments. Aeroelastic computations were made for a rec-
tangular wing by simultaneously integrating unsteady aerody-
namics and structural equations of motion. The computed
flutter results compare well with the wind-tunnel measured
data. The extension of the transonic dip into the supersonic
freestream zone and also the sensitivity of the responses at
supersonic freestreams are illustrated. The present time-accu-
rate simulation is close to wind-tunnel simulation and can be
an efficient compliment to wind-tunnel/flight tests for reduc-
ing design cost.
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